Search results
Results from the WOW.Com Content Network
In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group G ∗ H. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a ...
The precise definitions of these are given below. As it turns out, for a free group and for the free product of groups, there exists a unique normal form i.e each element is representable by a simpler element and this representation is unique. This is the Normal Form Theorem for the free groups and for the free product of groups.
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H.This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.
This means that X freely generates a subgroup of G isomorphic to the free group F(X) with free basis X and that, moreover, g i A i g i −1, f j B j f j −1 and X generate H in G as a free product of the above form. There is a generalization of this to the case of free products with arbitrarily many factors. [9] Its formulation is:
The free group G = π 1 (X) has n = 2 generators corresponding to loops a,b from the base point P in X.The subgroup H of even-length words, with index e = [G : H] = 2, corresponds to the covering graph Y with two vertices corresponding to the cosets H and H' = aH = bH = a −1 H = b − 1 H, and two lifted edges for each of the original loop-edges a,b.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A free group of finite rank n > 1 has an exponential growth rate of order 2n − 1. A few other related results are: The Nielsen–Schreier theorem: Every subgroup of a free group is free. Furthermore, if the free group F has rank n and the subgroup H has index e in F, then H is free of rank 1 + e(n–1).
AOL latest headlines, news articles on business, entertainment, health and world events.