enow.com Web Search

  1. Ads

    related to: factoring polynomials worksheets kuta division 5th graders math

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property, a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials.

  3. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    All possible combinations of integer factors can be tested for validity, and each valid one can be factored out using polynomial long division. If the original polynomial is the product of factors at least two of which are of degree 2 or higher, this technique only provides a partial factorization; otherwise the factorization is complete. In ...

  4. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors.This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm.

  5. Factor theorem - Wikipedia

    en.wikipedia.org/wiki/Factor_theorem

    In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).

  6. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    q is an integer factor of the leading coefficient a n. The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n = 1.

  7. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q(x) is simply the quotient obtained from the division process; since r is known to be a root of P(x), it is known that the remainder must be zero.

  8. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In algebra, Gauss's lemma, [1] named after Carl Friedrich Gauss, is a theorem [note 1] about polynomials over the integers, or, more generally, over a unique factorization domain (that is, a ring that has a unique factorization property similar to the fundamental theorem of arithmetic).

  9. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Suppose that the variables X i are given weights w i, and F(X 1, ..., X n) is a homogeneous polynomial of weight w. Then if c is coprime to w and R is a UFD and either every finitely generated projective module over R is free or c is 1 mod w , the ring R [ X 1 , ..., X n , Z ]/( Z c − F ( X 1 , ..., X n )) is a UFD.

  1. Ads

    related to: factoring polynomials worksheets kuta division 5th graders math