enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    The bond angle between the two hydrogen atoms is approximately 104.45°. [1] Nonlinear geometry is commonly observed for other triatomic molecules and ions containing only main group elements, prominent examples being nitrogen dioxide (NO 2 ), sulfur dichloride (SCl 2 ), and methylene (CH 2 ).

  3. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    A bond angle is the angle formed between three atoms across at least two bonds. For four atoms bonded together in a chain, the torsional angle is the angle between the plane formed by the first three atoms and the plane formed by the last three atoms. There exists a mathematical relationship among the bond angles for one central atom and four ...

  4. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Yet, clearly the bond angles between all these molecules deviate from their ideal geometries in different ways. Bent's rule can help elucidate these apparent discrepancies. [5] [20] [21] Electronegative substituents will have more p character. [5] [20] Bond angle has a proportional relationship with s character and an inverse relationship with ...

  5. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    The equatorial pair of ligands is situated in a plane orthogonal to the axis of the axial pair. Typically the bond distance to the axial ligands is longer than to the equatorial ligands. The ideal angle between the axial ligands and the equatorial ligands is 90°; whereas the ideal angle between the two equatorial ligands themselves is 120°.

  6. Bent bond - Wikipedia

    en.wikipedia.org/wiki/Bent_bond

    In fluoromethane (CH 3 F), for instance, the experimental F–C–H bond angle is 109°, which is greater than the calculated value. This is because according to Bent's rule , the C–F bond gains p-orbital character leading to high s-character in the C–H bonds, and H–C–H bond angles approaching those of sp 2 orbitals – e.g. 120 ...

  7. Walsh diagram - Wikipedia

    en.wikipedia.org/wiki/Walsh_diagram

    For the simplest AH 2 molecular system, Walsh produced the first angular correlation diagram by plotting the ab initio orbital energy curves for the canonical molecular orbitals while changing the bond angle from 90° to 180°. As the bond angle is distorted, the energy for each of the orbitals can be followed along the lines, allowing a quick ...

  8. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    A bond of higher bond order also exerts greater repulsion since the pi bond electrons contribute. [10] For example in isobutylene, (H 3 C) 2 C=CH 2, the H 3 C−C=C angle (124°) is larger than the H 3 C−C−CH 3 angle (111.5°). However, in the carbonate ion, CO 2− 3, all three C−O bonds are equivalent with angles of 120° due to resonance.

  9. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with the true bond angle of 104.45°. The difference between the predicted bond angle and the measured bond angle is traditionally explained by the electron repulsion of the two lone pairs occupying two sp 3 hybridized orbitals.