Ad
related to: igbt characteristics
Search results
Results from the WOW.Com Content Network
The IGBT combines the simple gate-drive characteristics of power MOSFETs with the high-current and low-saturation-voltage capability of bipolar transistors. The IGBT combines an isolated-gate FET for the control input and a bipolar power transistor as a switch in a single device.
The thyristor dominated the FACTs and HVDC world until the late 20th century, when the IGBT began to match its power ratings. [9] With the IGBT, the first voltage-sourced converters and STATCOMs began to enter the FACTs world. A prototype 1 MVAr STATCOM was described in a report by Empire State Electric Energy Research Corporation in 1987. [10]
The thyristor is a family of three-terminal devices that include SCRs, GTOs, and MCT. For most of the devices, a gate pulse turns the device on. The device turns off when the anode voltage falls below a value (relative to the cathode) determined by the device characteristics. When off, it is considered a reverse voltage blocking device. [19]
NXP 7030AL - N-channel TrenchMOS logic level FET IRF640 Power Mosfet die. The power MOSFET is the most widely used power semiconductor device in the world. [3] As of 2010, the power MOSFET accounts for 53% of the power transistor market, ahead of the insulated-gate bipolar transistor (27%), RF power amplifier (11%) and bipolar junction transistor (9%). [24]
For power semiconductor devices (such as BJT, MOSFET, thyristor or IGBT), the safe operating area (SOA) is defined as the voltage and current conditions over which the device can be expected to operate without self-damage. [1] Illustration of safe operating area of a bipolar power transistor.
The IGBT (insulated-gate bipolar transistor) is a device for power control. It has a structure akin to a MOSFET coupled with a bipolar-like main conduction channel. These are commonly used for the 200–3000 V drain-to-source voltage range of operation.
In IGBT, charge carrier concentration at emitter side in n-base layer is low as holes injected from collector easily pass to emitter electrode through p-base layer. Thus the wide-base pnp transistor operates by virtue of its current gain characteristics causing the rise collector-emitter saturation voltage.
Bipolar transistors can be considered voltage-controlled devices (fundamentally the collector current is controlled by the base–emitter voltage; the base current could be considered a defect and is controlled by the characteristics of the base–emitter junction and recombination in the base).
Ad
related to: igbt characteristics