Search results
Results from the WOW.Com Content Network
The converse of the capacity theorem essentially states that () is the best rate one can achieve over a binary symmetric channel. Formally the theorem states: Formally the theorem states:
The converse may or may not be true, and even if true, the proof may be difficult. For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context.
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration. This involves some sort of interactive proof editor, or other interface , with which a human can guide the search for proofs, the details of which are ...
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
As stated above, Thales's theorem is a special case of the inscribed angle theorem (the proof of which is quite similar to the first proof of Thales's theorem given above): Given three points A, B and C on a circle with center O, the angle ∠ AOC is twice as large as the angle ∠ ABC. A related result to Thales's theorem is the following:
Whereas Basic proportionality theorem (BPT) states that "If a line is drawn parallel to one side of a triangle intersecting the other two sides, then it divides the sides in the same ratio". In fact the Basic proportionality theorem can be used to prove Intercept theorem itself. Please suggest your opinion whether to move the article to BPT or not.
The converse relation does satisfy the (weaker) axioms of a semigroup with involution: () = and () =. [12] Since one may generally consider relations between different sets (which form a category rather than a monoid, namely the category of relations Rel ), in this context the converse relation conforms to the axioms of a dagger category (aka ...
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms.