Search results
Results from the WOW.Com Content Network
The converse can also be proved without assuming the Pythagorean theorem. [ 27 ] [ 28 ] A corollary of the Pythagorean theorem's converse is a simple means of determining whether a triangle is right, obtuse, or acute, as follows.
In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q". For example, the Pythagorean theorem can be stated as:
This theorem should not be confused with proposition 48 in book 1 of Euclid's Elements, the converse of the Pythagorean theorem, which states that if the square on one side of a triangle is equal to the sum of the squares on the other two sides then the other two sides contain a right angle.
The converse of the triangle inequality theorem is also true: if three real numbers are such that each is less than the sum of the others, then there exists a triangle with these numbers as its side lengths and with positive area; and if one number equals the sum of the other two, there exists a degenerate triangle (that is, with zero area ...
The use of the Pythagorean theorem and the tangent secant theorem can be replaced by a single application of the power of a point theorem. Case of acute angle γ, where a < 2b cos γ. Drop the perpendicular from A onto a = BC, creating a line segment of length b cos γ. Duplicate the right triangle to form the isosceles triangle ACP.
The three sides of a right triangle are related by the Pythagorean theorem, which in modern algebraic notation can be written a 2 + b 2 = c 2 , {\displaystyle a^{2}+b^{2}=c^{2},} where c {\displaystyle c} is the length of the hypotenuse (side opposite the right angle), and a {\displaystyle a} and b {\displaystyle b} are the lengths of the legs ...
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Every Euclidean field (an ordered field in which all non-negative elements are squares) is an ordered Pythagorean field, but the converse does not hold. [3] A quadratically closed field is Pythagorean field but not conversely (is Pythagorean); however, a non formally real Pythagorean field is quadratically closed.