Search results
Results from the WOW.Com Content Network
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning.It was proposed by Rummery and Niranjan in a technical note [1] with the name "Modified Connectionist Q-Learning" (MCQ-L).
Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent's decision function to accomplish difficult tasks. PPO was developed by John Schulman in 2017, [1] and had become the default RL algorithm at the US artificial intelligence company OpenAI. [2]
Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.
In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .
The concept of sample complexity also shows up in reinforcement learning, [8] online learning, and unsupervised algorithms, e.g. for dictionary learning. [ 9 ] Efficiency in robotics
Similar to reinforcement learning, a learning automata algorithm also has the advantage of solving the problem when probability or rewards are unknown. The difference between learning automata and Q-learning is that the former technique omits the memory of Q-values, but updates the action probability directly to find the learning result.
Many responses preceding reinforcement may become correlated with the reinforcer, but the final response receives the greatest weight in memory. Specific models are provided for the three basic principles to articulate predicted response patterns in many different situations and under different schedules of reinforcement.