Search results
Results from the WOW.Com Content Network
The nervous system is divided by neurologists into two parts: the central nervous system (which consists of the brain and spinal cord) and the peripheral nervous system (which consists of cranial and spinal nerves along with their associated ganglia). While the peripheral nervous system has an intrinsic ability for repair and regeneration, the ...
1963 – Robert J. White isolated the brain from one monkey and attached it to the circulatory system of another animal. [11] 1993 – Rodolfo Llinás captured the whole brain of a guinea-pig in a fluidic profusion system in vitro which survived for around 8 hours and indicates that field potentials were very similar to those described in vivo ...
Cerebral hyperaemia is a fundamental central nervous system mechanism of homeostasis that increases blood supply to neural tissue when necessary. [3] This mechanism controls oxygen and nutrient levels using vasodilation and vasoconstriction in a multidimensional process involving the many cells of the neurovascular unit, along with multiple ...
The axolotl is less commonly used than other vertebrates, but is still a classical model for examining regeneration and neurogenesis. Though the axolotl has made its place in biomedical research in terms of limb regeneration, [19] [20] the model organism has displayed a robust ability to generate new neurons following damage.
They can only function in collaboration with other neurons and interneurons in a neural circuit. [1] There are an estimated 100 billion neurons in the human brain. [1] Neurons are polarised cells that are specialised for the conduction of action potentials also called nerve impulses. [1] They can also synthesise membrane and protein.
In vertebrates, the majority of neurons belong to the central nervous system, but some reside in peripheral ganglia, and many sensory neurons are situated in sensory organs such as the retina and cochlea. Axons may bundle into nerve fascicles that make up the nerves in the peripheral nervous system (like strands of wire that make up a cable).
Nerve growth factors are produced causing many nerve sprouts to bud. When one of the growth processes finds the regeneration tube, it begins to grow rapidly towards its original destination guided the entire time by the regeneration tube. Nerve regeneration is very slow and can take up to several months to complete.
Disease and virology studies can use permanent cells to maintain cell count and accurately quantify the effects of vaccines. [1] Some embryology studies also use permanent cells to avoid harvesting embryonic cells from pregnant animals; since the cells are permanent, they may be harvested at a later age when an animal is fully developed.