enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The total area of a histogram used for probability density is always normalized to 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot. Histograms are sometimes confused with bar charts. In a histogram, each bin is for a different range of values, so altogether the histogram ...

  3. V-optimal histograms - Wikipedia

    en.wikipedia.org/wiki/V-optimal_histograms

    A v-optimal histogram is based on the concept of minimizing a quantity which is called the weighted variance in this context. [1] This is defined as = =, where the histogram consists of J bins or buckets, n j is the number of items contained in the jth bin and where V j is the variance between the values associated with the items in the jth bin.

  4. Exploratory data analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_data_analysis

    Histogram of tip amounts where the bins cover $0.10 increments. An interesting phenomenon is visible: peaks occur at the whole-dollar and half-dollar amounts, which is caused by customers picking round numbers as tips. This behavior is common to other types of purchases too, like gasoline.

  5. Kolmogorov–Smirnov test - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

    Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.

  6. Histogram of oriented gradients - Wikipedia

    en.wikipedia.org/wiki/Histogram_of_oriented...

    The histogram of oriented gradients (HOG) is a feature descriptor used in computer vision and image processing for the purpose of object detection. The technique counts occurrences of gradient orientation in localized portions of an image.

  7. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed .

  8. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    Histogram equalization is a specific case of the more general class of histogram remapping methods. These methods seek to adjust the image to make it easier to analyze or improve visual quality (e.g., retinex)

  9. Image histogram - Wikipedia

    en.wikipedia.org/wiki/Image_histogram

    An image histogram is a type of histogram that acts as a graphical representation of the tonal distribution in a digital image. [1] It plots the number of pixels for each tonal value. By looking at the histogram for a specific image a viewer will be able to judge the entire tonal distribution at a glance.