enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Leftist tree - Wikipedia

    en.wikipedia.org/wiki/Leftist_tree

    In addition to the heap property, leftist trees are maintained so the right descendant of each node has the lower s-value. The height-biased leftist tree was invented by Clark Allan Crane. [2] The name comes from the fact that the left subtree is usually taller than the right subtree. A leftist tree is a mergeable heap. When inserting a new ...

  3. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero.

  4. Left-child right-sibling binary tree - Wikipedia

    en.wikipedia.org/wiki/Left-child_right-sibling...

    6-ary tree represented as a binary tree. Every multi-way or k-ary tree structure studied in computer science admits a representation as a binary tree, which goes by various names including child-sibling representation, [1] left-child, right-sibling binary tree, [2] doubly chained tree or filial-heir chain. [3]

  5. Skew heap - Wikipedia

    en.wikipedia.org/wiki/Skew_heap

    A skew heap (or self-adjusting heap) is a heap data structure implemented as a binary tree. Skew heaps are advantageous because of their ability to merge more quickly than binary heaps. In contrast with binary heaps, there are no structural constraints, so there is no guarantee that the height of the tree is logarithmic. Only two conditions ...

  6. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    For height-balanced binary trees, the height is defined to be logarithmic (⁡) in the number of items. This is the case for many binary search trees, such as AVL trees and red–black trees . Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items.

  7. Tree rotation - Wikipedia

    en.wikipedia.org/wiki/Tree_rotation

    The tree rotation renders the inorder traversal of the binary tree invariant. This implies the order of the elements is not affected when a rotation is performed in any part of the tree. Here are the inorder traversals of the trees shown above: Left tree: ((A, P, B), Q, C) Right tree: (A, P, (B, Q, C))

  8. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    Animation showing the insertion of several elements into an AVL tree. It includes left, right, left-right and right-left rotations. Fig. 1: AVL tree with balance factors (green) In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree.

  9. Quadtree - Wikipedia

    en.wikipedia.org/wiki/Quadtree

    In these trees, each node contains one of the input points. Since the division of the plane is decided by the order of point-insertion, the tree's height is sensitive to and dependent on insertion order. Inserting in a "bad" order can lead to a tree of height linear in the number of input points (at which point it becomes a linked-list).