Search results
Results from the WOW.Com Content Network
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
However, this formal similarity notwithstanding, possessing a complex-antiderivative is a much more restrictive condition than its real counterpart. While it is possible for a discontinuous real function to have an anti-derivative, anti-derivatives can fail to exist even for holomorphic functions of a complex variable.
As an example, the field := of rational functions in a single variable has a derivation given by the standard derivative with respect to that variable. The constants of this field are just the complex numbers; that is, (()) =,
If f is a function, then its derivative evaluated at x is written ′ (). It first appeared in print in 1749. [3] Higher derivatives are indicated using additional prime marks, as in ″ for the second derivative and ‴ for the third derivative. The use of repeated prime marks eventually becomes unwieldy.
The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R n. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the tensor algebra of a manifold
Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity. Integrals involving only logarithmic functions
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]
And because the derivative of an additive constant is 0, any constant may be added to the antiderivative and the result will still be an antiderivative of 1/z. In a certain sense, the 1/ z counterexample is universal: For every analytic function that has no antiderivative on its domain, the reason for this is that 1/ z itself does not have an ...