Search results
Results from the WOW.Com Content Network
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
The approach based on Einstein's mobility and Teorell formula gives the following generalization of Fick's equation for the multicomponent diffusion of the perfect components: = (), where φ i are concentrations of the components and D ij is the matrix of coefficients.
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
Assuming that N particles start from the origin at the initial time t = 0, the diffusion equation has the solution (,) = (). This expression (which is a normal distribution with the mean μ = 0 {\displaystyle \mu =0} and variance σ 2 = 2 D t {\displaystyle \sigma ^{2}=2Dt} usually called Brownian motion B t {\displaystyle B_{t}} ) allowed ...
D is the diffusion coefficient that controls the speed of the diffusive process, and is typically expressed in meters squared over second. If the diffusion coefficient D is not constant, but depends on the concentration c (or P in the second case), then one gets the nonlinear diffusion equation.
Diffusion models may also be used to solve inverse boundary value problems in which some information about the depositional environment is known from paleoenvironmental reconstruction and the diffusion equation is used to figure out the sediment influx and time series of landform changes.
The simplest reaction–diffusion equation is in one spatial dimension in plane geometry, = + (), is also referred to as the Kolmogorov–Petrovsky–Piskunov equation. [2] If the reaction term vanishes, then the equation represents a pure diffusion process.
The convection–diffusion equation describes the flow of heat, particles, or other physical quantities in situations where there is both diffusion and convection or advection. For information about the equation, its derivation, and its conceptual importance and consequences, see the main article convection–diffusion equation. This article ...