enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  3. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    SymPy is an open-source Python library for symbolic computation.It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]

  4. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    where the modulus m is a prime number or a power of a prime number, the multiplier a is an element of high multiplicative order modulo m (e.g., a primitive root modulo n), and the seed X 0 is coprime to m. Other names are multiplicative linear congruential generator (MLCG) [2] and multiplicative congruential generator (MCG).

  5. Legendre's conjecture - Wikipedia

    en.wikipedia.org/wiki/Legendre's_conjecture

    Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between and (+) for every positive integer. [ 1 ] The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers.

  6. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    Two modulo-9 LCGs show how different parameters lead to different cycle lengths. Each row shows the state evolving until it repeats. The top row shows a generator with m = 9, a = 2, c = 0, and a seed of 1, which produces a cycle of length 6. The second row is the same generator with a seed of 3, which produces a cycle of length 2.

  7. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length.

  8. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.

  9. Multiply-with-carry pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Multiply-with-carry...

    where c is a constant. If a ≡ 1 (mod 4) and c is odd, the resulting base-2 32 congruential sequence will have period 2 32. [4] This can be computed using only the low 32 bits of the product of a and the current x. However, many microprocessors can compute a full 64-bit product in almost the same time as the low 32 bits. Indeed, many compute ...