Search results
Results from the WOW.Com Content Network
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...
Markov chain models have been used in advanced baseball analysis since 1960, although their use is still rare. Each half-inning of a baseball game fits the Markov chain state when the number of runners and outs are considered. During any at-bat, there are 24 possible combinations of number of outs and position of the runners.
A terminating Markov chain is a Markov chain where all states are transient, except one which is absorbing. Reordering the states, the transition probability matrix of a terminating Markov chain with m {\displaystyle m} transient states is
A basic property about an absorbing Markov chain is the expected number of visits to a transient state j starting from a transient state i (before being absorbed). This can be established to be given by the (i, j) entry of so-called fundamental matrix N, obtained by summing Q k for all k (from 0 to ∞).
For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and = holds, then by summing over , the global balance equations are satisfied and is the stationary distribution of the process. [5]
In 1953 the term Markov chain was used for stochastic processes with discrete or continuous index set, living on a countable or finite state space, see Doob. [1] or Chung. [2] Since the late 20th century it became more popular to consider a Markov chain as a stochastic process with discrete index set, living on a measurable state space. [3] [4] [5]
A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.
Locke assures his readers that the state of nature is a state of plenty: one may take from communal store if one leaves a) enough and b) as good for others, and since nature is bountiful, one can take all that one can use without taking anything from someone else. Moreover, one can take only so much as one can use before it spoils.