enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Images (jpg) Classification 2017–2024 [318] Mihai Oltean Weed-ID.App Database with 1,025 species, 13,500+ images, and 120,000+ characteristics Varying size and background. Labeled by PhD botanist. 13,500 Images, text Classification 1999-2024 [319] Richard Old CottonWeedDet3 Dataset A 3-class weed detection dataset for cotton cropping systems

  3. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  4. ImageNet - Wikipedia

    en.wikipedia.org/wiki/ImageNet

    In machine learning, these are typically preprocessed into a standard constant resolution, and whitened, before further processing by neural networks. For example, in PyTorch, ImageNet images are by default normalized by dividing the pixel values so that they fall between 0 and 1, then subtracting by [0.485, 0.456, 0.406], then dividing by [0. ...

  5. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  6. Text-to-image model - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_model

    A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Text-to-image models began to be developed in the mid-2010s during the beginnings of the AI boom, as a result of advances in deep neural networks.

  7. Capsule neural network - Wikipedia

    en.wikipedia.org/wiki/Capsule_neural_network

    The network is trained by minimizing the euclidean distance between the image and the output of a CNN that reconstructs the input from the output of the terminal capsules. [1] The network is discriminatively trained, using iterative routing-by-agreement. [1] The activity vectors of all but the correct parent are masked. [1]

  8. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    The set of images in the MNIST database was created in 1994. Previously, NIST released two datasets: Special Database 1 (NIST Test Data I, or SD-1); and Special Database 3 (or SD-2).

  9. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In the context of neural networks, a perceptron is an artificial neuron using the Heaviside step function as the activation function. The perceptron algorithm is also termed the single-layer perceptron , to distinguish it from a multilayer perceptron , which is a misnomer for a more complicated neural network.