Search results
Results from the WOW.Com Content Network
The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...
It is necessary to make assumptions about the nature of the experimental errors to test the results statistically. A common assumption is that the errors belong to a normal distribution. The central limit theorem supports the idea that this is a good approximation in many cases. The Gauss–Markov theorem.
If the assumptions of OLS regression hold, the solution = (), with =, is an unbiased estimator, and is the minimum-variance linear unbiased estimator, according to the Gauss–Markov theorem. The term λ n I {\displaystyle \lambda nI} therefore leads to a biased solution; however, it also tends to reduce variance.
This transformation effectively standardizes the scale of and de-correlates the errors. When OLS is used on data with homoscedastic errors, the Gauss–Markov theorem applies, so the GLS estimate is the best linear unbiased estimator for .
If the experimental errors, , are uncorrelated, have a mean of zero and a constant variance, , the Gauss–Markov theorem states that the least-squares estimator, ^, has the minimum variance of all estimators that are linear combinations of the observations. In this sense it is the best, or optimal, estimator of the parameters.
[a] [2] Ignoring simultaneity in the estimation leads to biased estimates as it violates the exogeneity assumption of the Gauss–Markov theorem. The problem of endogeneity is often ignored by researchers conducting non-experimental research and doing so precludes making policy recommendations. [3]
The Gauss–Markov theorem states that regression models which fulfill the classical linear regression model assumptions provide the most efficient, ...
Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.