Search results
Results from the WOW.Com Content Network
M. A. Armstrong, Basic Topology, Springer-Verlag, 1983 Sasho Kalajdzievski, An Illustrated Introduction to Topology and Homotopy , CRC Press, 2010, Chapter 10: Isotopy and Homotopy This topology-related article is a stub .
Undergraduate Texts in Mathematics (UTM) (ISSN 0172-6056) is a series of undergraduate-level textbooks in mathematics published by Springer-Verlag.The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size.
Kelley's 1955 text, General Topology, which eventually appeared in three editions and several translations, is a classic and widely cited graduate-level introduction to topology. An appendix sets out a new approach to axiomatic set theory, now called Morse–Kelley set theory, that builds on Von Neumann–Bernays–Gödel set theory.
Pointless topology (also called point-free or pointfree topology) is an approach to topology that avoids mentioning points. The name 'pointless topology' is due to John von Neumann . [ 9 ] The ideas of pointless topology are closely related to mereotopologies , in which regions (sets) are treated as foundational without explicit reference to ...
A key concept in defining simplicial homology is the notion of an orientation of a simplex. By definition, an orientation of a k-simplex is given by an ordering of the vertices, written as (v 0,...,v k), with the rule that two orderings define the same orientation if and only if they differ by an even permutation.
Learn how to download and install or uninstall the Desktop Gold software and if your computer meets the system requirements.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...