Search results
Results from the WOW.Com Content Network
The detonation velocity values presented here are typically for the highest practical density which maximizes achievable detonation velocity. [1] The velocity of detonation is an important indicator for overall energy and power of detonation, and in particular for the brisance or shattering effect of an explosive which is due to the detonation ...
Typical detonation velocities for organic dust mixtures range from 1400 to 1650 m/s. [2] Gas explosions can either deflagrate or detonate based on confinement; detonation velocities are generally around 1700 m/s [3] [4] [5] but can be as high as 3000 m/s. [6] Solid explosives often have detonation velocities ranging beyond 4000 m/s to 10300 m/s.
As a simple approximate equation, the physical value of is usually very close to 1/3 of the detonation velocity of the explosive material for standard explosives. [1] For a typical set of military explosives, the value of D 2 E {\displaystyle {\frac {D}{\sqrt {2E}}}} ranges from between 2.32 for Tritonal and 3.16 for PAX-29n.
The Chapman–Jouguet condition holds approximately in detonation waves in high explosives. It states that the detonation propagates at a velocity at which the reacting gases just reach sonic velocity (in the frame of the leading shock wave) as the reaction ceases. [1] [2]
High explosives (HE, or high-order explosives) are explosive materials that detonate, meaning that the explosive shock front passes through the material at a supersonic speed. High explosives detonate with explosive velocity of about 3–9 kilometres per second (9,800–29,500 ft/s). For instance, TNT has a detonation (burn) rate of ...
In contrast, a detonation is characterized by supersonic flame propagation velocities, perhaps up to 2,000 metres per second (4,500 mph), and substantial overpressures, up to 2 megapascals (290 psi). The main mechanism of detonation propagation is of a powerful pressure wave that compresses the unburnt gas ahead of the wave to a temperature ...
When used in explosive devices, the main cause of damage from a detonation is the supersonic blast front (a powerful shock wave) in the surrounding area. This is a significant distinction from deflagrations where the exothermic wave is subsonic and maximum pressures for non-metal specks of dust are approximately 7–10 times atmospheric ...
Detonating cord (also called detonation cord, detacord, detcord, blasting rope, or primer cord) is a thin, flexible plastic tube usually filled with pentaerythritol tetranitrate (PETN, pentrite). With the PETN exploding at a rate of approximately 6,400 m/s (21,000 ft/s), any common length of detonation cord appears to explode instantaneously.