Search results
Results from the WOW.Com Content Network
The kinetic theory of gases entails that due to the microscopic reversibility of the gas particles' detailed dynamics, the system must obey the principle of detailed balance. Specifically, the fluctuation-dissipation theorem applies to the Brownian motion (or diffusion ) and the drag force , which leads to the Einstein–Smoluchowski equation ...
The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions , vortical flow, relativistic speed limits, and quantum exchange interactions ) that can make their speed distribution different from the Maxwell–Boltzmann form.
According to the assumptions of the kinetic theory of ideal gases, one can consider that there are no intermolecular attractions between the molecules, or atoms, of an ideal gas. In other words, its potential energy is zero. Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas.
Thus the average kinetic energy of the particle is 3 / 2 k B T, as in the example of noble gases above. More generally, in a monatomic ideal gas the total energy consists purely of (translational) kinetic energy: by assumption, the particles have no internal degrees of freedom and move independently of one another.
As the construct that gases are small particles in Brownian motion became widely accepted and numerous quantitative studies verifying that the macroscopic properties of gases, such as temperature, pressure and density, are the results of collisions of moving particles, [3] the study of kinetic theory of gases became increasingly an integrated ...
The Boltzmann constant (k B or k) is the proportionality factor that relates the average relative thermal energy of particles in a gas with the thermodynamic temperature of the gas. [2] It occurs in the definitions of the kelvin (K) and the gas constant , in Planck's law of black-body radiation and Boltzmann's entropy formula , and is used in ...
The second part expresses the kinetic energy of a system of particles in terms of the velocities of the individual particles and the centre of mass.. Specifically, it states that the kinetic energy of a system of particles is the sum of the kinetic energy associated to the movement of the center of mass and the kinetic energy associated to the movement of the particles relative to the center ...
The kinetic energy of the system is: = (˙ + ˙) where is the mass of the bobs, is the length of the strings, and , are the angular displacements of the two bobs from equilibrium. The potential energy of the system is: E p = m g L ( 2 − cos θ 1 − cos θ 2 ) + 1 2 k L 2 ( θ 2 − θ 1 ) 2 {\displaystyle E_{\text{p}}=mgL(2-\cos ...