Search results
Results from the WOW.Com Content Network
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
The log-normal distribution, describing variables which can be modelled as the product of many small independent positive variables. The Lomax distribution; The Mittag-Leffler distribution; The Nakagami distribution; The Pareto distribution, or "power law" distribution, used in the analysis of financial data and critical behavior.
In this example, the ratio (probability of living during an interval) / (duration of the interval) is approximately constant, and equal to 2 per hour (or 2 hour −1). For example, there is 0.02 probability of dying in the 0.01-hour interval between 5 and 5.01 hours, and (0.02 probability / 0.01 hours) = 2 hour −1.
In geology, a rock composed of different minerals may be a compositional data point in a sample of rocks; a rock of which 10% is the first mineral, 30% is the second, and the remaining 60% is the third would correspond to the triple [0.1, 0.3, 0.6]. A data set would contain one such triple for each rock in a sample of rocks.
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the
For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0.05. In statistics , Fisher's method , [ 1 ] [ 2 ] also known as Fisher's combined probability test , is a technique for data fusion or " meta-analysis " (analysis of analyses).
The Portable Format for Analytics (PFA) is a JSON-based predictive model interchange format conceived and developed by Jim Pivarski. [ citation needed ] PFA provides a way for analytic applications to describe and exchange predictive models produced by analytics and machine learning algorithms.
Examples of variance-stabilizing transformations are the Fisher transformation for the sample correlation coefficient, the square root transformation or Anscombe transform for Poisson data (count data), the Box–Cox transformation for regression analysis, and the arcsine square root transformation or angular transformation for proportions ...