Search results
Results from the WOW.Com Content Network
The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. [1] [2] [3] It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic ...
The conditions for Stille's experiments differ significantly from industrial process conditions. Other studies using normal industrial Wacker conditions (except with high chloride and high copper chloride concentrations) also yielded products that inferred nucleophilic attack was an anti-addition reaction. [15]
The Tsuji–Trost reaction (also called the Trost allylic alkylation or allylic alkylation) is a palladium-catalysed substitution reaction involving a substrate that contains a leaving group in an allylic position. The palladium catalyst first coordinates with the allyl group and then undergoes oxidative addition, forming the π-allyl
The largest use of palladium today is in catalytic converters. [41] Palladium is also used in jewelry, dentistry, [41] [42] watch making, blood sugar test strips, aircraft spark plugs, surgical instruments, and electrical contacts. [43] Palladium is also used to make some professional transverse (concert or classical) flutes. [44]
Organopalladium chemistry is a branch of organometallic chemistry that deals with organic palladium compounds and their reactions. Palladium is often used as a catalyst in the reduction of alkenes and alkynes with hydrogen. This process involves the formation of a palladium-carbon covalent bond.
The use of copper-cocatalyst in addition to palladium complexes in Sonogashira's procedure enabled the reactions to be carried under mild reaction conditions in excellent yields. A rapid development of the Pd/Cu systems followed and enabled myriad synthetic applications, while Cassar-Heck conditions were left, maybe unjustly, all but forgotten ...
A large variety of phosphine-based ligands may be used in palladium-phosphine catalysts. Bulky, electron-rich ligands such as tris(2,4,6-trimethoxyphenyl)phosphine result in catalysts that are more reactive in the oxidative addition step [2] and can catalyze the coupling of aryl chlorides, which are typically unreactive. [5]
Separation begins with dissolution of the sample. If aqua regia is used, the chloride complexes are produced. Depending on the details of the process, which are often trade secrets, the individual PGMs are obtained as the following compounds: the poorly soluble (NH 4) 2 IrCl 6 and (NH 4) 2 PtCl 6, PdCl 2 (NH 3) 2, the volatile OsO 4 and RuO 4 ...