enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    The gradient thus does not vanish in arbitrarily deep networks. Feedforward networks with residual connections can be regarded as an ensemble of relatively shallow nets. In this perspective, they resolve the vanishing gradient problem by being equivalent to ensembles of many shallow networks, for which there is no vanishing gradient problem. [17]

  3. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    The residual learning formulation provides the added benefit of mitigating the vanishing gradient problem to some extent. However, it is crucial to acknowledge that the vanishing gradient issue is not the root cause of the degradation problem, which is tackled through the use of normalization.

  4. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models, and other sequence learning methods.

  5. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  6. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Then, the backpropagation algorithm is used to find the gradient of the loss function with respect to all the network parameters. Consider an example of a neural network that contains a recurrent layer and a feedforward layer . There are different ways to define the training cost, but the aggregated cost is always the average of the costs of ...

  7. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear. [ 1 ] Modern activation functions include the logistic ( sigmoid ) function used in the 2012 speech recognition model developed by Hinton et al; [ 2 ] the ReLU used in the 2012 AlexNet computer vision model [ 3 ] [ 4 ] and in the 2015 ResNet model ...

  8. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    This problem is also solved in the independently recurrent neural network (IndRNN) [87] by reducing the context of a neuron to its own past state and the cross-neuron information can then be explored in the following layers. Memories of different ranges including long-term memory can be learned without the gradient vanishing and exploding problem.

  9. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...