Search results
Results from the WOW.Com Content Network
Cavernous hemangioma, also called cavernous angioma, venous malformation, or cavernoma, [1] [2] is a type of venous malformation due to endothelial dysmorphogenesis from a lesion which is present at birth. A cavernoma in the brain is called a cerebral cavernous malformation or CCM.
Cerebral cavernous malformation (CCM) is a cavernous hemangioma that arises in the central nervous system.It can be considered to be a variant of hemangioma, and is characterized by grossly large dilated blood vessels and large vascular channels, less well circumscribed, and more involved with deep structures, with a single layer of endothelium and an absence of neuronal tissue within the lesions.
Blood can leave the erectile tissue only through a drainage system of veins around the outside wall of the corpus cavernosum. The expanding spongy tissue presses against a surrounding dense tissue (tunica albuginea) constricting these veins, preventing blood from leaving. The penis becomes rigid as a result.
Angiosarcoma is a rare and aggressive cancer that starts in the endothelial cells that line the walls of blood vessels or lymphatic vessels.Since they are made from vascular lining, they can appear anywhere and at any age, but older people are more commonly affected, and the skin is the most affected area, with approximately 60% of cases being cutaneous (skin).
Vasodilation works to decrease vascular resistance and blood pressure through relaxation of smooth muscle cells in the tunica media layer of large arteries and smaller arterioles. [17] When vasodilation causes systolic blood pressure to fall below 90 mmHg, circulatory shock is observed. [11]
Aortic pressure, also called central aortic blood pressure, or central blood pressure, is the blood pressure at the root of the aorta. Elevated aortic pressure has been found to be a more accurate predictor of both cardiovascular events and mortality, as well as structural changes in the heart, than has peripheral blood pressure (such as ...
Vascular smooth muscle contracts or relaxes to change both the volume of blood vessels and the local blood pressure, a mechanism that is responsible for the redistribution of the blood within the body to areas where it is needed (i.e. areas with temporarily enhanced oxygen consumption).
The narrowing of blood vessels leads to an increase in peripheral resistance, thereby elevating blood pressure. While vasoconstriction is a normal and essential regulatory mechanism for maintaining blood pressure and redistributing blood flow during various physiological processes, its dysregulation can contribute to pathological conditions.