Search results
Results from the WOW.Com Content Network
Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...
The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice. In mathematics and solid state physics , the first Brillouin zone (named after Léon Brillouin ) is a uniquely defined primitive cell in reciprocal space .
The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector.
Another helpful ingredient in the proof is the reciprocal lattice vectors. These are three vectors b 1, b 2, b 3 (with units of inverse length), with the property that a i · b i = 2π, but a i · b j = 0 when i ≠ j. (For the formula for b i, see reciprocal lattice vector.)
Ray diagram of Von Laue formulation. In physics, a Bragg plane is a plane in reciprocal space which bisects a reciprocal lattice vector, , at right angles. [1] The Bragg plane is defined as part of the Von Laue condition for diffraction peaks in x-ray diffraction crystallography.
This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...
Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)
The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [1] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices. In nature, carbon atoms of the two-dimensional material graphene are arranged in a honeycomb ...