Search results
Results from the WOW.Com Content Network
English: Functional proteins have four levels of structural organization: 1) Primary Structure : the linear structure of amino acids in the polypeptide chain 2) Secondary Structure : hydrogen bonds between peptide group chains in an alpha helix or beta 3) Tertiary Structure : three-dimensional structure of alpha helixes and beta helixes folded
The generation of a protein sequence is much easier than the determination of a protein structure. However, the structure of a protein gives much more insight in the function of the protein than its sequence. Therefore, a number of methods for the computational prediction of protein structure from its sequence have been developed. [39]
Ribbon diagrams, also known as Richardson diagrams, are 3D schematic representations of protein structure and are one of the most common methods of protein depiction used today. The ribbon depicts the general course and organization of the protein backbone in 3D and serves as a visual framework for hanging details of the entire atomic structure ...
This can help to show how protein sequence relates to tertiary structure. Another option is to instead colour by secondary structure, which can help to illustrate the general fold class and broad structural features of a protein (which is often more useful than focussing on primary sequence order). The following standard colour scheme is ...
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
The following other wikis use this file: Usage on bs.wikipedia.org Struktura proteina; Usage on de.wikipedia.org Bändermodell (Proteine) Usage on en.wikibooks.org
The Protein Structure Initiative (PSI) is a multifaceted effort funded by the National Institutes of Health with various academic and industrial partners that aims to increase knowledge of protein structure using a structural genomics approach and to improve structure-determination methodology.
An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns).