Search results
Results from the WOW.Com Content Network
a:(b,c,d), b:(c,a,d), c:(a,b,d), d:(a,b,c) In this ranking, each of A, B, and C is the most preferable person for someone. In any solution, one of A, B, or C must be paired with D and the other two with each other (for example AD and BC), yet for anyone who is partnered with D, another member will have rated them highest, and D's partner will ...
The hospitals/residents problem with couples allows the set of residents to include couples who must be assigned together, either to the same hospital or to a specific pair of hospitals chosen by the couple (e.g., a married couple want to ensure that they will stay together and not be stuck in programs that are far away from each other).
The axiom of pairing is generally considered uncontroversial, and it or an equivalent appears in just about any axiomatization of set theory. Nevertheless, in the standard formulation of the Zermelo–Fraenkel set theory, the axiom of pairing follows from the axiom schema of replacement applied to any given set with two or more elements, and thus it is sometimes omitted.
The statement that this is the only quadratic pairing function is known as the Fueter–Pólya theorem. [9] Whether this is the only polynomial pairing function is still an open question. When we apply the pairing function to k 1 and k 2 we often denote the resulting number as k 1, k 2 . [citation needed]
In general, the collections may be indexed over any set I, (called index set whose elements are used as indices for elements in a set) not just R. In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty.
A set with precisely two elements is also called a 2-set or (rarely) a binary set. An unordered pair is a finite set; its cardinality (number of elements) is 2 or (if the two elements are not distinct) 1. In axiomatic set theory, the existence of unordered pairs is required by an axiom, the axiom of pairing.
The paired association task broken down to its basics is: a stimuli, response, and the consequence of the cue association. This is best seen in a study where Naya, Sakai, & Miyashita [5] performed one version of the task on monkeys. In the study a primate was given a visual-visual paired-associate task where they were shown all the pairs in the ...
Let (,) and (,) be ordered pairs. Then the characteristic (or defining) property of the ordered pair is: (,) = (,) = =.. The set of all ordered pairs whose first entry is in some set A and whose second entry is in some set B is called the Cartesian product of A and B, and written A × B.