Search results
Results from the WOW.Com Content Network
Mesenchyme (/ ˈ m ɛ s ə n k aɪ m ˈ m iː z ən-/ [1]) is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. [2] [3] The interactions between mesenchyme and epithelium help to form nearly every organ in the developing embryo. [4]
The face and neck development of the human embryo refers to the development of the structures from the third to eighth week that give rise to the future head and neck.They consist of three layers, the ectoderm, mesoderm and endoderm, which form the mesenchyme (derived form the lateral plate mesoderm and paraxial mesoderm), neural crest and neural placodes (from the ectoderm). [1]
These experiments reveal that the limb mesenchyme contains the necessary information concerning limb identity, but the AER is needed to stimulate the mesenchyme to live up to its destiny (of becoming an arm, leg, etc.) When the AER is removed, limb development halts. If an FGF-bead is added in the AER's place, normal limb development proceeds.
Mesenchymal stem cells (MSCs) also known as mesenchymal stromal cells or medicinal signaling cells, are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts (bone cells), chondrocytes (cartilage cells), myocytes (muscle cells) and adipocytes (fat cells which give rise to marrow adipose tissue).
The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types.
The arachnoid mater covering the brain is referred to as the arachnoidea encephali, and the portion covering the spinal cord as the arachnoidea spinalis. The arachnoid and pia mater are sometimes considered as a single structure, the leptomeninx, or the plural version, leptomeninges ( lepto , from the Greek root meaning "thin" or "slender").
The rate of epithelial invagination in significantly increased by action of FGF-9, which is only expressed in the epithelium, and not in the mesenchyme. FGF-10 helps to stimulate epithelial cell proliferation, in order make larger tooth germs. Mammalian teeth develop from ectoderm derived from the mesenchyme: oral ectoderm and neural crest.
The mesoderm forms mesenchyme, mesothelium and coelomocytes. Mesothelium lines coeloms. Mesoderm forms the muscles in a process known as myogenesis, septa (cross-wise partitions) and mesenteries (length-wise partitions); and forms part of the gonads (the rest being the gametes). [1] [unreliable source?] Myogenesis is specifically a function of ...