Search results
Results from the WOW.Com Content Network
Like the statistical mean and median, the mode is a way of expressing, in a (usually) single number, important information about a random variable or a population. The numerical value of the mode is the same as that of the mean and median in a normal distribution, and it may be very different in highly skewed distributions.
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode. The median of a uniform distribution in the interval [a, b] is (a + b) / 2, which is also the mean. The median of a Cauchy distribution with location parameter x 0 and scale parameter y is x 0, the location parameter.
Most commonly, using the 2-norm generalizes the mean to k-means clustering, while using the 1-norm generalizes the (geometric) median to k-medians clustering. Using the 0-norm simply generalizes the mode (most common value) to using the k most common values as centers.
The mean of a set of observations is the arithmetic average of the values; however, for skewed distributions, the mean is not necessarily the same as the middle value (median), or the most likely value (mode). For example, mean income is typically skewed upwards by a small number of people with very large incomes, so that the majority have an ...
The fit of a Weibull distribution to data can be visually assessed using a Weibull plot. [17] The Weibull plot is a plot of the empirical cumulative distribution function F ^ ( x ) {\displaystyle {\widehat {F}}(x)} of data on special axes in a type of Q–Q plot .
In general, there is no single formula to find the median for a binomial distribution, and it may even be non-unique. However, several special results have been established: If np is an integer, then the mean, median, and mode coincide and equal np. [10] [11]