Search results
Results from the WOW.Com Content Network
A set of points drawn from a uniform distribution on the surface of a unit 2-sphere, generated using Marsaglia's algorithm. To generate uniformly distributed random points on the unit -sphere (that is, the surface of the unit -ball), Marsaglia (1972) gives the following algorithm.
where V is the volume of a sphere and r is the radius. S A = 4 π r 2 {\displaystyle SA=4\pi r^{2}} where SA is the surface area of a sphere and r is the radius.
The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation:
The n-sphere of unit radius centered at the origin is denoted S n and is often referred to as "the" n-sphere. The ordinary sphere is a 2-sphere, because it is a 2-dimensional surface which is embedded in 3-dimensional space. In topology, the n-sphere is an example of a compact topological manifold without boundary.
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...
Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For n = 2, in a 2-dimensional plane , "balls" according to the L 1-norm (often called the taxicab or Manhattan metric) are bounded by squares with their diagonals parallel to the coordinate axes; those according to the L ∞-norm, also called the Chebyshev metric, have squares with their sides parallel to the coordinate axes as their boundaries.