enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.

  3. Qalculate! - Wikipedia

    en.wikipedia.org/wiki/Qalculate!

    Qalculate! supports common mathematical functions and operations, multiple bases, autocompletion, complex numbers, infinite numbers, arrays and matrices, variables, mathematical and physical constants, user-defined functions, symbolic derivation and integration, solving of equations involving unknowns, uncertainty propagation using interval arithmetic, plotting using Gnuplot, unit and currency ...

  4. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    An unpublished computational program written in Pascal called Abra inspired this open-source software. Abra was originally designed for physicists to compute problems present in quantum mechanics. Kespers Peeters then decided to write a similar program in C computing language rather than Pascal, which he renamed Cadabra. However, Cadabra has ...

  5. Armadillo (C++ library) - Wikipedia

    en.wikipedia.org/wiki/Armadillo_(C++_library)

    An interface to the Python language is available through the PyArmadillo package, [4] which facilitates prototyping of algorithms in Python followed by relatively straightforward conversion to C++. Armadillo is a core dependency of the mlpack machine learning library [ 5 ] and the ensmallen C++ library for numerical optimization.

  6. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are potentially limited only by the available memory of the host system.

  7. Complex data type - Wikipedia

    en.wikipedia.org/wiki/Complex_data_type

    The JScience library has a Complex number class. The JAS library allows the use of complex numbers. Netlib has a complex number class for Java. javafastcomplex also adds complex number support for Java; jcomplexnumber is a project on implementation of complex number in Java. JLinAlg includes complex numbers with arbitrary precision.

  8. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In particular, if either or in the complex domain can be computed with some complexity, then that complexity is attainable for all other elementary functions. Below, the size n {\displaystyle n} refers to the number of digits of precision at which the function is to be evaluated.