enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    [5] The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ...

  3. Square root of 5 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_5

    A rectangle with side proportions 1: is called a root-five rectangle and is part of the series of root rectangles, a subset of dynamic rectangles, which are based on (= 1), , , (= 2), ... and successively constructed using the diagonal of the previous root rectangle, starting from a square. [8] A root-5 rectangle is particularly notable in that ...

  4. Spiral of Theodorus - Wikipedia

    en.wikipedia.org/wiki/Spiral_of_Theodorus

    The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.

  5. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Since x 2 represents the area of a square with side of length x, and bx represents the area of a rectangle with sides b and x, the process of completing the square can be viewed as visual manipulation of rectangles. Simple attempts to combine the x 2 and the bx rectangles into a larger square result in a missing corner.

  6. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The two squared formulas inside the square root give the areas of squares on the horizontal and vertical sides, and the outer square root converts the area of the square on the hypotenuse into the length of the hypotenuse. [3] It is also possible to compute the distance for points given by polar coordinates.

  7. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  8. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.

  9. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    For example, given the length of the legs a = 5 and b = 12, then the sum of the legs squared is (5 × 5) + (12 × 12) = 169, the square of the hypotenuse. The length of the hypotenuse is thus the square root of 169, denoted , which equals 13. The Pythagorean theorem, and hence this length, can also be derived from the law of cosines in ...