Search results
Results from the WOW.Com Content Network
A time–distance diagram is a chart with two axes: one for time, the other for location. The units on either axis depend on the type of project: time can be expressed in minutes (for overnight construction of railroad modification projects such as the installation of switches) or years (for large construction projects); the location can be (kilo)meters, or other distinct units (such as ...
The green line shows the slope of the velocity-time graph at the particular point where the two lines touch. Its slope is the acceleration at that point. Its slope is the acceleration at that point. In mechanics , the derivative of the position vs. time graph of an object is equal to the velocity of the object.
Unlike a regular distance-time graph, the distance is displayed on the horizontal axis and time on the vertical axis. Additionally, the time and space units of measurement are chosen in such a way that an object moving at the speed of light is depicted as following a 45° angle to the diagram's axes.
The graph in the figure is a plot of speed versus time. Distance covered is the area under the line. Each time interval is coloured differently. The distance covered in the second and subsequent intervals is the area of its trapezium, which can be subdivided into triangles as shown.
For telescopic angles, the approximations of = = greatly simplify the trigonometry, enabling one to scale objects measured in milliradians through a telescope by a factor of 1000 for distance or height. An object 5 meters high, for example, will cover 1 mrad at 5000 meters, or 5 mrad at 1000 meters, or 25 mrad at 200 meters.
Different from instantaneous speed, average speed is defined as the total distance covered divided by the time interval. For example, if a distance of 80 kilometres is driven in 1 hour, the average speed is 80 kilometres per hour. Likewise, if 320 kilometres are travelled in 4 hours, the average speed is also 80 kilometres per hour.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The transport theorem (or transport equation, rate of change transport theorem or basic kinematic equation or Bour's formula, named after: Edmond Bour) is a vector equation that relates the time derivative of a Euclidean vector as evaluated in a non-rotating coordinate system to its time derivative in a rotating reference frame.