Search results
Results from the WOW.Com Content Network
The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI). It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is an SI coherent derived unit defined as one newton per square metre (N/m 2). [1]
The SI unit for pressure is the pascal (Pa), equal to one newton per square metre (N/m 2, or kg·m −1 ·s −2). This name for the unit was added in 1971; [7] before that, pressure in SI was expressed in newtons per square metre. Other units of pressure, such as pounds per square inch (lbf/in 2) and bar, are also in common use.
±300 Pa ±0.043 psi Lung air pressure difference moving the normal breaths of a person (only 0.3% of standard atmospheric pressure) [35] [36] 400–900 Pa 0.06–0.13 psi Atmospheric pressure on Mars, < 1% of atmospheric sea-level pressure on Earth [37] 610 Pa 0.089 psi Partial vapor pressure at the triple point of water (611.657 Pa) [38] [39 ...
The SI unit for pressure is the pascal (Pa), equal to one newton per square metre (N·m −2 or kg·m −1 ·s −2). This special name for the unit was added in 1971; before that, pressure in SI was expressed in units such as N·m −2. When indicated, the zero reference is stated in parentheses following the unit, for example 101 kPa (abs).
The International System of Units (SI) recognizes pressure as a derived unit with the dimension of force per area and designates the pascal (Pa) as its standard unit. [1] One pascal is one newton per square meter (N·m −2 or kg·m −1 ·s −2). Experimental measurement of vapor pressure is a simple procedure for common pressures between 1 ...
The millimeter of mercury by definition is 133.322387415 Pa [5] (13.5951 g/cm 3 × 9.80665 m/s 2 × 1 mm), which is approximated with known accuracies of density of mercury and standard gravity. The torr is defined as 1 / 760 of one standard atmosphere, while the atmosphere is defined as 101325 pascals.
A centimetre of water [1] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 cm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 cmH 2 O (4°C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 cm = 98.063754138 Pa ≈ 98.0638 Pa, but conventionally a nominal maximum water density of 1000 kg/m 3 is used, giving ...
Internal pressure can be expressed in terms of temperature, pressure and their mutual dependence: = This equation is one of the simplest thermodynamic equations.More precisely, it is a thermodynamic property relation, since it holds true for any system and connects the equation of state to one or more thermodynamic energy properties.