enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  3. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    The two dots on top of the x position vectors denote their second derivative with respect to time, or their acceleration vectors. Adding and subtracting these two equations decouples them into two one-body problems, which can be solved independently. Adding equations (1) and results in an equation describing the center of mass motion.

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Discontinuities in acceleration do not occur in real-world environments because of deformation, quantum mechanics effects, and other causes. However, a jump-discontinuity in acceleration and, accordingly, unbounded jerk are feasible in an idealized setting, such as an idealized point mass moving along a piecewise smooth, whole continuous path ...

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    The n-body problem considers n point masses m i, i = 1, 2, …, n in an inertial reference frame in three dimensional space ℝ 3 moving under the influence of mutual gravitational attraction. Each mass m i has a position vector q i. Newton's second law says that mass times acceleration m i ⁠ d 2 q i / dt 2 ⁠ is equal to the sum of the ...

  8. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17530°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60639° and the crank-rod angle is 88.21832°. Clearly, in ...

  9. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Calculation of the speed difference for a uniform acceleration. Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period. A frequently cited example of uniform acceleration is that of an object in free fall in a uniform gravitational field.