Search results
Results from the WOW.Com Content Network
The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18
In fluid dynamics, normalized root mean square deviation (NRMSD), coefficient of variation (CV), and percent RMS are used to quantify the uniformity of flow behavior such as velocity profile, temperature distribution, or gas species concentration. The value is compared to industry standards to optimize the design of flow and thermal equipment ...
The metric equivalent flow factor (K v) is calculated using metric units: =, where [3]. K v is the flow factor (expressed in m 3 /h), Q is the flowrate (expressed in m 3 /h), SG is the specific gravity of the fluid (for water = 1),
This estimate is sometimes referred to as the "geometric CV" (GCV), [19] [20] due to its use of the geometric variance. Contrary to the arithmetic standard deviation, the arithmetic coefficient of variation is independent of the arithmetic mean. The parameters μ and σ can be obtained, if the arithmetic mean and the arithmetic variance are known:
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).
95% of the area under the normal distribution lies within 1.96 standard deviations away from the mean.. In probability and statistics, the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations.
The heating value of a fuel can be calculated with the results of ultimate analysis of fuel. From analysis, percentages of the combustibles in the fuel (carbon, hydrogen, sulfur) are known. Since the heat of combustion of these elements is known, the heating value can be calculated using Dulong's Formula: