Search results
Results from the WOW.Com Content Network
The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the ...
[2] [25] Interestingly, the excited state does not obey the octet rule as the carbon atoms have an average 6.5 valence electrons surrounding them. Further, the internuclear region contains only three electrons, the same as in the benzene molecule ( see above ), and this explains why the carbon-carbon bond length in the excited state of ...
A trick is to count up valence electrons, then count up the number of electrons needed to complete the octet rule (or with hydrogen just 2 electrons), then take the difference of these two numbers. The answer is the number of electrons that make up the bonds. The rest of the electrons just go to fill all the other atoms' octets.
In 1960, Linnett originated a modification to the octet rule, originally proposed by Lewis, concerning valence electrons. He proposed that the octet should be considered as a double quartet of electrons rather than as four pairs, and hence the theory became known as "Linnett double-quartet theory". Using this method, he was able to explain the ...
The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H z A x O y. The structures of condensed oxyanions can be rationalized in terms of AO n polyhedral units with sharing of corners or edges between polyhedra.
The neutral counting method assumes each OH bond is split equally (each atom gets one electron from the bond). Thus both hydrogen atoms have an electron count of one. The oxygen atom has 6 valence electrons. The total electron count is 8, which agrees with the octet rule.
On the other hand, some compounds that are normally written with ionic bonds in order to conform to the octet rule, such as ozone O 3, nitrous oxide NNO, and trimethylamine N-oxide (CH 3) 3 NO, are found to be genuinely hypervalent. Examples of γ calculations for phosphate PO 3− 4 (γ(P) = 2.6, non-hypervalent) and orthonitrate NO 3−
An example of a ditungsten compound with a quadruple bond is ditungsten tetra(hpp). Quadruple bonds between atoms of main-group elements are unknown. For the dicarbon (C 2 ) molecule as an example, molecular orbital theory shows that there are two sets of paired electrons in the sigma system (one bonding, one antibonding), and two sets of ...