Search results
Results from the WOW.Com Content Network
Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.
The location of the top of the sediment-water interface in the water column is defined as the break in the vertical gradient of some dissolved component, such as oxygen, where the concentration transitions from higher concentration in the well-mixed water above to a lower concentration at the sediment surface.
The benthic boundary layer (BBL) plays a vital role in the cycling of matter and is commonly referred to as the “endpoint” or "sink" for sediment material, which fuels high metabolic rates for microbial populations. [7] The particles from the pelagic ecosystem sink to the BBL where they will be used by organisms. [2]
As with oceans, the benthic zone is the floor of the lake, composed of accumulated sunken organic matter. The littoral zone is the zone bordering the shore; light penetrates easily and aquatic plants thrive. The pelagic zone represents the broad mass of water, down as far as the depth to which no light penetrates. [9]
A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [12] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...
In chemistry and physics, the exchange interaction is a quantum mechanical constraint on the states of indistinguishable particles.While sometimes called an exchange force, or, in the case of fermions, Pauli repulsion, its consequences cannot always be predicted based on classical ideas of force. [1]
In physics, two objects are said to be coupled when they are interacting with each other. In classical mechanics, coupling is a connection between two oscillating systems, such as pendulums connected by a spring. The connection affects the oscillatory pattern of both objects.