enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  3. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.

  5. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Bézout's identity. In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem: Bézout's identity — Let a and b be integers with greatest common divisor d. Then there exist integers x and y such that ax + by = d. Moreover, the integers of the form az ...

  6. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. No closed-form expression for the partition function is known, but it has both asymptotic expansions that ...

  7. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    Modulo 2, every integer is a quadratic residue. Modulo an odd prime number p there are (p + 1)/2 residues (including 0) and (p − 1)/2 nonresidues, by Euler's criterion.In this case, it is customary to consider 0 as a special case and work within the multiplicative group of nonzero elements of the field (/).

  8. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    In the following Diophantine equations, w, x, y, and z are the unknowns and the other letters are given constants: a x + b y = c {\displaystyle ax+by=c} This is a linear Diophantine equation or Bézout's identity. w 3 + x 3 = y 3 + z 3 {\displaystyle w^ {3}+x^ {3}=y^ {3}+z^ {3}} The smallest nontrivial solution in positive integers is 123 + 13 ...

  9. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    The corresponding addition and multiplication of equivalence classes is known as modular arithmetic. From the point of view of abstract algebra, congruence modulo n {\displaystyle n} is a congruence relation on the ring of integers, and arithmetic modulo n {\displaystyle n} occurs on the corresponding quotient ring .