enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    Molar volume. In chemistry and related fields, the molar volume, symbol Vm, [1] or of a substance is the ratio of the volume (V) occupied by a substance to the amount of substance (n), usually at a given temperature and pressure. It is also equal to the molar mass (M) divided by the mass density (ρ): The molar volume has the SI unit of cubic ...

  3. Mole (unit) - Wikipedia

    en.wikipedia.org/wiki/Mole_(unit)

    The mole is widely used in chemistry as a convenient way to express amounts of reactants and amounts of products of chemical reactions. For example, the chemical equation 2 H 2 + O 22 H 2 O can be interpreted to mean that for each 2 mol molecular hydrogen (H 2) and 1 mol molecular oxygen (O 2) that react, 2 mol of water (H 2 O) form.

  4. Extent of reaction - Wikipedia

    en.wikipedia.org/wiki/Extent_of_reaction

    The change in the extent of reaction is then defined as [2] [3] = where denotes the number of moles of the reactant or product and is the stoichiometric number [4] of the reactant or product. Although less common, we see from this expression that since the stoichiometric number can either be considered to be dimensionless or to have units of ...

  5. Avogadro's law - Wikipedia

    en.wikipedia.org/wiki/Avogadro's_Law

    Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [1] For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant. The law is named after Amedeo Avogadro who, in 1812, [2][3 ...

  6. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    Mole ratio: Convert moles of Cu to moles of Ag produced; Mole to mass: Convert moles of Ag to grams of Ag produced; The complete balanced equation would be: Cu + 2 AgNO 3 → Cu(NO 3) 2 + 2 Ag. For the mass to mole step, the mass of copper (16.00 g) would be converted to moles of copper by dividing the mass of copper by its molar mass: 63.55 g/mol.

  7. Molar concentration - Wikipedia

    en.wikipedia.org/wiki/Molar_concentration

    m(NaCl) = 2 mol/L × 0.1 L × 58 g/mol = 11.6 g. To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore ...

  8. Limiting reagent - Wikipedia

    en.wikipedia.org/wiki/Limiting_reagent

    If in fact 18 mol O 2 are present, there will be an excess of (18 - 11.25) = 6.75 mol of unreacted oxygen when all the benzene is consumed. Benzene is then the limiting reagent. This conclusion can be verified by comparing the mole ratio of O 2 and C 6 H 6 required by the balanced equation with the mole ratio actually present:

  9. Mole fraction - Wikipedia

    en.wikipedia.org/wiki/Mole_fraction

    In chemistry, the mole fraction or molar fraction, also called mole proportion or molar proportion, is a quantity defined as the ratio between the amount of a constituent substance, ni (expressed in unit of moles, symbol mol), and the total amount of all constituents in a mixture, ntot (also expressed in moles): [1] It is denoted xi (lowercase ...