enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitation of the Moon - Wikipedia

    en.wikipedia.org/wiki/Gravitation_of_the_Moon

    Gravitation of the Moon. The acceleration due to gravity on the surface of the Moon is approximately 1.625 m/s 2, about 16.6% that on Earth's surface or 0.166 ɡ. [1] Over the entire surface, the variation in gravitational acceleration is about 0.0253 m/s 2 (1.6% of the acceleration due to gravity). Because weight is directly dependent upon ...

  3. Planetary mass - Wikipedia

    en.wikipedia.org/wiki/Planetary_mass

    The choice of solar mass, M ☉, as the basic unit for planetary mass comes directly from the calculations used to determine planetary mass.In the most precise case, that of the Earth itself, the mass is known in terms of solar masses to twelve significant figures: the same mass, in terms of kilograms or other Earth-based units, is only known to five significant figures, which is less than a ...

  4. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    The mass of an object is a measure of the object’s inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s 2.

  5. Earth mass - Wikipedia

    en.wikipedia.org/wiki/Earth_mass

    The Earth mass is a standard unit of mass in astronomy that is used to indicate the masses of other planets, including rocky terrestrial planets and exoplanets. One Solar mass is close to 333 000 Earth masses. The Earth mass excludes the mass of the Moon. The mass of the Moon is about 1.2% of that of the Earth, so that the mass of the Earth ...

  6. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  7. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The precise strength of Earth's gravity varies with location. The agreed upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2) by definition. [4] This quantity is denoted variously as gn, ge (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2)), [5] g0, or simply g (which is also ...

  8. Planetary-mass moon - Wikipedia

    en.wikipedia.org/wiki/Planetary-mass_moon

    A planetary-mass moon is a planetary-mass object that is also a natural satellite. They are large and ellipsoidal (sometimes spherical) in shape. Moons may be in hydrostatic equilibrium due to tidal or radiogenic heating, in some cases forming a subsurface ocean. Two moons in the Solar System, Ganymede and Titan, are larger than the planet ...

  9. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    For example, the Moon does not orbit the exact center of the Earth, but a point on a line between the center of the Earth and the Moon, approximately 1,710 km (1,062 miles) below the surface of the Earth, where their respective masses balance. This is the point about which the Earth and Moon orbit as they travel around the Sun.