enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cosmic background radiation - Wikipedia

    en.wikipedia.org/wiki/Cosmic_background_radiation

    Background radiation is largely homogeneous and isotropic. A slight detectable anisotropy is present which correlates to galaxy filaments and voids. [2] [3] The discovery (by chance in 1965) of the cosmic background radiation suggests that the early universe was dominated by a radiation field, a field of extremely high temperature and pressure. [4]

  3. Cosmic microwave background - Wikipedia

    en.wikipedia.org/wiki/Cosmic_microwave_background

    The power spectrum of the cosmic microwave background radiation temperature anisotropy in terms of the angular scale (or multipole moment). The data shown comes from the WMAP (2006), Acbar (2004) Boomerang (2005), CBI (2004), and VSA (2004) instruments. Also shown is a theoretical model (solid line).

  4. Background radiation - Wikipedia

    en.wikipedia.org/wiki/Background_radiation

    Displayed background gamma radiation level is 9.8 μR/h (0.82 mSv/a) This is very close to the world average background radiation of 0.87 mSv/a from cosmic and terrestrial sources. Cloud chambers used by early researchers first detected cosmic rays and other background radiation. They can be used to visualize the background radiation

  5. CMB cold spot - Wikipedia

    en.wikipedia.org/wiki/CMB_cold_spot

    The mean ISW imprint 50 supervoids have on the Cosmic Microwave Background: [9] [clarification needed] color scale from -20 to +20 μK.. One possible explanation of the cold spot is a huge void between us and the primordial CMB.

  6. Axis of evil (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Axis_of_evil_(cosmology)

    The "axis of evil" is a name given to an unsubstantiated correlation between the plane of the Solar System and aspects of the cosmic microwave background (CMB).It gives the plane of the Solar System and hence the location of Earth a greater significance than might be expected by chance – a result which has been claimed to be evidence of a departure from the Copernican principle. [1]

  7. Discovery of cosmic microwave background radiation - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_cosmic...

    The discovery of cosmic microwave background radiation constitutes a major development in modern physical cosmology. In 1964, US physicist Arno Allan Penzias and radio-astronomer Robert Woodrow Wilson discovered the cosmic microwave background (CMB) , estimating its temperature as 3.5 K, as they experimented with the Holmdel Horn Antenna .

  8. George Smoot - Wikipedia

    en.wikipedia.org/wiki/George_Smoot

    He won the Nobel Prize in Physics in 2006 for his work on the Cosmic Background Explorer with John C. Mather that led to the "discovery of the black body form and anisotropy of the cosmic microwave background radiation". This work helped further the Big Bang theory of the universe using the Cosmic Background Explorer (COBE) satellite. [3]

  9. Cosmic Background Explorer - Wikipedia

    en.wikipedia.org/wiki/Cosmic_Background_Explorer

    The Cosmic Background Explorer (COBE / ˈ k oʊ b i / KOH-bee), also referred to as Explorer 66, was a NASA satellite dedicated to cosmology, which operated from 1989 to 1993.Its goals were to investigate the cosmic microwave background radiation (CMB or CMBR) of the universe and provide measurements that would help shape the understanding of the cosmos.