Search results
Results from the WOW.Com Content Network
Radioactive iodine (iodine-131) alone can potentially worsen thyrotoxicosis in the first few days after treatment. One side effect of treatment is an initial period of a few days of increased hyperthyroid symptoms. This occurs because when the radioactive iodine destroys the thyroid cells, they can release thyroid hormone into the blood stream.
Iodine-125 (125 I) is a radioisotope of iodine which has uses in biological assays, nuclear medicine imaging and in radiation therapy as brachytherapy to treat a number of conditions, including prostate cancer, uveal melanomas, and brain tumors. It is the second longest-lived radioisotope of iodine, after iodine-129.
129 I is one of the seven long-lived fission products that are produced in significant amounts. Its yield is 0.706% per fission of 235 U. [7] Larger proportions of other iodine isotopes such as 131 I are produced, but because these all have short half-lives, iodine in cooled spent nuclear fuel consists of about 5/6 129 I and 1/6 the only stable iodine isotope, 127 I.
Types of electromagnetic radiation. Radiation exposure is a measure of the ionization of air due to ionizing ... iodine-125 (unfiltered) 1.46 [34] iridium-192 ...
Taking large amounts of iodide saturates thyroid receptors and prevents uptake of most radioactive iodine-131 that may be present from fission product exposure (although it does not protect from other radioisotopes, nor from any other form of direct radiation). The protective effect of KI lasts approximately 24 hours, so must be dosed daily ...
Whenever individuals remain in a radiologically contaminated area, such contamination leads to an immediate external radiation exposure as well as a possible later internal hazard from inhalation and ingestion of radiocontaminants, such as the rather short-lived iodine-131, which is accumulated in the thyroid.
Energy Northwest failed to correctly measure the exposure of workers who inhaled or ingested radioactive material during an incident at the Northwest’s only commercial nuclear power plant, said ...
Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).