Search results
Results from the WOW.Com Content Network
The Limits to Growth (LTG) is a 1972 report [2] that discussed the possibility of exponential economic and population growth with finite supply of resources, studied by computer simulation. [3] The study used the World3 computer model to simulate the consequence of interactions between the Earth and human systems.
It then became a term used generally in biology in the 1870s, being most developed in wildlife and livestock management in the early 1900s. [9] It had become a staple term in ecology used to define the biological limits of a natural system related to population size in the 1950s. [8] [9]
Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.
Liebig's law has been extended to biological populations (and is commonly used in ecosystem modelling).For example, the growth of an organism such as a plant may be dependent on a number of different factors, such as sunlight or mineral nutrients (e.g., nitrate or phosphate).
The 1972 book The Limits to Growth discussed the limits to growth of society as a whole. This book included a computer-based model which predicted that the Earth would reach a carrying capacity of ten to fourteen billion people after some two hundred years, after which the human population would collapse. [7]
By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in physics. [8] Malthus wrote that all life forms, including humans, have a propensity to exponential population growth when resources are abundant but that actual growth is limited by available resources:
There are four key processes that underlie development: Determination, differentiation, morphogenesis, and growth. Determination sets the developmental fate of a cell, which becomes more restrictive during development. Differentiation is the process by which specialized cells arise from less specialized cells such as stem cells.
Population growth against time in a population growing logistically. The steepest parts of the graph are where the population growth is most rapid. The logistic growth equation is an effective tool for modelling intraspecific competition despite its simplicity, and has been used to model many real biological systems.