Search results
Results from the WOW.Com Content Network
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
An internal iterator is a higher order function (often taking anonymous functions) that traverses a collection while applying a function to each element. For example, Python's map function applies a caller-defined function to each element:
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A,I,V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
Python makes a distinction between lists and tuples. Lists are written as [1, 2, 3], are mutable, and cannot be used as the keys of dictionaries (dictionary keys must be immutable in Python). Tuples, written as (1, 2, 3), are immutable and thus can be used as keys of dictionaries, provided all of the tuple's elements are immutable.
The member function erase can be used to delete an element from a collection, but for containers which are based on an array, such as vector, all elements after the deleted element have to be moved forward to avoid "gaps" in the collection. Calling erase multiple times on the same container generates much overhead from moving the elements.
This is still the conceptually simplest way to construct a queue in a high-level language, but it does admittedly slow things down a little, because the array indices must be compared to zero and the array size, which is comparable to the time taken to check whether an array index is out of bounds, which some languages do, but this will ...
For premium support please call: 800-290-4726 more ways to reach us
One technique for bounds-checking elimination is to use a typed static single assignment form representation and for each array to create a new type representing a safe index for that particular array. The first use of a value as an array index results in a runtime type cast (and appropriate check), but subsequently the safe index value can be ...