Search results
Results from the WOW.Com Content Network
The Shockley diode equation, ... is the reverse-bias saturation current (or scale current), is the voltage across the diode, is the thermal voltage ...
J 0, reverse saturation current density (ampere/cm 2) r S, specific series resistance (Ω·cm 2) r SH, specific shunt resistance (Ω·cm 2). This formulation has several advantages. One is that since cell characteristics are referenced to a common cross-sectional area they may be compared for cells of different physical dimensions.
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
From the Shockley ideal diode equation given above, it might appear that the voltage has a positive temperature coefficient (at a constant current), but usually the variation of the reverse saturation current term is more significant than the variation in the thermal voltage term.
The Shockley diode (named after physicist William Shockley) is a four-layer semiconductor diode, which was one of the first semiconductor devices invented. It is a PNPN diode with alternating layers of P-type and N-type material.
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage. [1]
The Shockley diode equation gives the current–voltage relationship for the ideal ... is the diode's reverse saturation current and is the ...
The Shockley–Queisser limit, zoomed in near the region of peak efficiency. In a traditional solid-state semiconductor such as silicon, a solar cell is made from two doped crystals, one an n-type semiconductor, which has extra free electrons, and the other a p-type semiconductor, which is lacking free electrons, referred to as "holes."