Search results
Results from the WOW.Com Content Network
A slide rule is a hand-operated mechanical calculator consisting of slidable rulers for evaluating mathematical operations such as multiplication, division, exponents, roots, logarithms, and trigonometry.
For example, on a simple calculator, typing 1 + 2 × 3 = yields 9, while a more sophisticated calculator will use a more standard priority, so typing 1 + 2 × 3 = yields 7. Calculators may associate exponents to the left or to the right.
A scientific calculator is an electronic calculator, either desktop or handheld, designed to perform calculations using basic (addition, subtraction, multiplication, division) and advanced (trigonometric, hyperbolic, etc.) mathematical operations and functions.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The calculator used a traditional floating decimal display for numbers that could be displayed in that format, but automatically switched to scientific notation for other numbers. The fifteen-digit LED display was capable of displaying a ten-digit mantissa plus its sign and a decimal point and a two-digit exponent plus its sign.
It addition to standard features such as trigonometric functions, exponents, logarithm, and intelligent order of operations found in TI-30 and TI-34 series of calculators, it also include base (decimal, hexadecimal, octal, binary) calculations, complex values, statistics. Conversions include polar-rectangular coordinates (P←→R), angles.
Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!