Search results
Results from the WOW.Com Content Network
Cyanobacteria are found almost everywhere, but particularly in lakes and in the ocean where, under high concentration of phosphorus conditions, they reproduce exponentially to form blooms. Blooming cyanobacteria can produce cyanotoxins in such concentrations that they can poison and even kill animals and humans.
On the other hand, toxic cyanobacterial blooms are an increasing issue for society, as their toxins can be harmful to animals. [32] Extreme blooms can also deplete water of oxygen and reduce the penetration of sunlight and visibility, thereby compromising the feeding and mating behaviour of light-reliant species.
The late summer blooms of Nodularia spumigena are among the largest cyanobacterial mass occurrences in the world. Cyanobacteria are composed of many toxic substances, most notably of microcystins and nodularins: the two are not easily differentiated. A significant homology of structure and function exists between the two, and microcystins have ...
Cyanobacteria (blue-green algae) bloom on Lake Erie (United States) in 2009. These kinds of algae can cause harmful algal bloom. A harmful algal bloom (HAB), or excessive algae growth, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, water deoxygenation, mechanical damage to other organisms, or by other means.
Microcystin-LR is toxic for both humans and animals. There are epidemiological results from studies that have shown symptoms of poisoning attributed to the presence of cyanotoxins in drinking water. The effects are divided in short-term and long-term effects.
Microcystis aeruginosa is a species of freshwater cyanobacteria that can form harmful algal blooms of economic and ecological importance. They are the most common toxic cyanobacterial bloom in eutrophic fresh water. Cyanobacteria produce neurotoxins and peptide hepatotoxins, such as microcystin and cyanopeptolin. [1]
Anatoxin-a producing cyanobacteria have also been found in soils and aquatic plants. Anatoxin-a sorbs well to negatively charged sites in clay-like, organic-rich soils and weakly to sandy soils. One study found both bound and free anatoxin-a in 38% of aquatic plants sampled across 12 Nebraskan reservoirs, with much higher incidence of bound ...
The appearance of cyanobacteria in water storage bodies is becoming of increasing importance and is a major factor in the eutrophication of rivers and streams. Many times the effects of the bacteria's presence can be toxic for livestock and wildlife, as well as for humans. [7] Its exact mode of virulence, however, is still unknown.