Search results
Results from the WOW.Com Content Network
In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.
Detection bias occurs when a phenomenon is more likely to be observed for a particular set of study subjects. For instance, the syndemic involving obesity and diabetes may mean doctors are more likely to look for diabetes in obese patients than in thinner patients, leading to an inflation in diabetes among obese patients because of skewed detection efforts.
Bias is a property of the estimator, not of the estimate. Often, people refer to a "biased estimate" or an "unbiased estimate", but they really are talking about an "estimate from a biased estimator", or an "estimate from an unbiased estimator". Also, people often confuse the "error" of a single estimate with the "bias" of an estimator.
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
Efficiency in statistics is important because they allow one to compare the performance of various estimators. Although an unbiased estimator is usually favored over a biased one, a more efficient biased estimator can sometimes be more valuable than a less efficient unbiased estimator.
If the estimator that produces the ^ values is unbiased, then (^) =. However, if the estimations θ i ^ {\displaystyle {\hat {\theta _{i}}}} are produced by a biased estimator , then the mean signed difference is a useful tool to understand the direction of the estimator's bias.
Under simple random sampling the bias is of the order O( n −1). An upper bound on the relative bias of the estimate is provided by the coefficient of variation (the ratio of the standard deviation to the mean). [2] Under simple random sampling the relative bias is O( n −1/2).
When the estimated number and the true value is equal, the estimator is considered unbiased. This is called an unbiased estimator. The estimator will become a best unbiased estimator if it has minimum variance. However, a biased estimator with a small variance may be more useful than an unbiased estimator with a large variance. [1]