Search results
Results from the WOW.Com Content Network
High harmonic generation strongly depends on the driving laser field and as a result the harmonics have similar temporal and spatial coherence properties. [10] High harmonics are often generated with pulse durations shorter than that of the driving laser. [11] This is due to the nonlinearity of the generation process, phase matching and ...
The energy of this transition corresponds to 17th harmonic with 800 nm excitation wavelength. Similarly, in Indium, there exists a strong transition 4d 10 5s 2 → 4d 9 5s 2 5p at 19.92 eV with a high gf value of 1.11. [10] The energy of this transition corresponds to 13th harmonic with 800 nm excitation wavelength.
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
The first nonlinear optical effect to be predicted was two-photon absorption, by Maria Goeppert Mayer for her PhD in 1931, but it remained an unexplored theoretical curiosity until 1961 and the almost simultaneous observation of two-photon absorption at Bell Labs [4] and the discovery of second-harmonic generation by Peter Franken et al. at University of Michigan, both shortly after the ...
N-th harmonic generation. Harmonic generation (HG, also called multiple harmonic generation) is a nonlinear optical process in which photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with times the energy of the initial photons (equivalently, times the frequency and the wavelength divided by ).
The intensity of light, over a narrow frequency range, is reduced due to absorption by the material and re-emission in random directions. By contrast, a bright emission line is produced when photons from a hot material are detected, perhaps in the presence of a broad spectrum from a cooler source.
The ratio of the high period to the total period of a pulse wave is called the duty cycle. A true square wave has a 50% duty cycle (equal high and low periods). Square waves are often encountered in electronics and signal processing, particularly digital electronics and digital signal processing. Its stochastic counterpart is a two-state ...
Raman spectroscopy is used to analyze a wide range of materials, including gases, liquids, and solids. Highly complex materials such as biological organisms and human tissue [26] can also be analyzed by Raman spectroscopy. For solid materials, Raman scattering is used as a tool to detect high-frequency phonon and magnon excitations.