Search results
Results from the WOW.Com Content Network
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.
The strings over an alphabet, with the concatenation operation, form an associative algebraic structure with identity element the null string—a free monoid. Sets of strings with concatenation and alternation form a semiring, with concatenation (*) distributing over alternation (+); 0 is the empty set and 1 the set consisting of just the null ...
A string substitution or simply a substitution is a mapping f that maps characters in Σ to languages (possibly in a different alphabet). Thus, for example, given a character a ∈ Σ, one has f(a)=L a where L a ⊆ Δ * is some language whose alphabet is Δ. This mapping may be extended to strings as f(ε)=ε
A string (or word [23] or expression [24]) over Σ is any finite sequence of symbols from Σ. [25] For example, if Σ = {0, 1}, then 01011 is a string over Σ. The length of a string s is the number of symbols in s (the length of the sequence) and can be any non-negative integer; it is often denoted as |s|.
C# describes variadic functions using the params keyword. A type must be provided for the arguments, although object[] can be used as a catch-all. At the calling site, you can either list the arguments one by one, or hand over a pre-existing array having the required element type. Using the variadic form is Syntactic sugar for the latter.
This is the set of all strings that can be made by concatenating any finite number (including zero) of strings from the set described by R. For example, if R denotes {"0", "1"}, (R*) denotes the set of all finite binary strings (including the empty string).
This means a string cannot contain the zero code unit, as the first one seen marks the end of the string. The length of a string is the number of code units before the zero code unit. [1] The memory occupied by a string is always one more code unit than the length, as space is needed to store the zero terminator. Generally, the term string ...